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Introduction

The recent article Assessment of Safecast bGeigie Nano Monitor by
Walsh, Kelleher, and Currivan (WKC) [1] is noteworthy because (i)
it confirms that the calibration of the bGeigie Nano for 137Cs is quite
accurate at the (gamma) dose rates for which it was designed to oper-
ate and agrees well with data from a dedicated, calibrated stationary
gamma detector; (ii) it confirms (although this has been long known
for the LND 7317 Geiger-Müller tube) that the system readily de-
tects α particles (outside its case), and β particles even with the case
closed; and (iii) it provides data in a form which makes the extraction
of the ‘dead time’ of the LND 7317 Geiger-Müller tube straightfor-
ward.

The article also provides other useful data for the bGeigie Nano:
the angular response as the plane of the Geiger-Müller mica mem-
brane is tilted away from the direction of incident radiation, which
must then traverse some or all of the counter wall, and quantitative
information about sensitivity to β radiation. The authors selected
241Am (nominally an α emitter) and a mixed 90Sr/90Y source. 90Sr
(half life 28.79 years) emits essentially only 0.546 MeV β particles
while 90Y (into which it decays) emits 2.280 MeV β, with a 64.6 hour
half life. Thus it is possible that the 90Y could be the dominant source
of penetrating β particles. Tests with and without the Pelican polycar-
bonate case (with the detector against the source so that the relatively

http://crss.hirosaki-u.ac.jp/wp-content/files_mf/1553071086Web_REM811_JoshuaWalsh.pdf
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short range α particles would not have been absorbed by air), to-
gether with the assumption that γ rays are unattenuated by the case,
provide important information about bGeigie sensitity to α and β

particles. About 36.6% of the counts observed with the case off are
attributable to α particles from the 241Am source (the α decay branch-
ing ratio is essentially 100%); about 97% of counts detected from a
90Sr/90Y source with the case off are β particles (the β decay branch-
ing ratio is essentially 100%).

The authors appear not to have noticed, however, that rather than
assessing the accuracy of the bGeigie Nano dose rate as a function
of the intensity of incident γ radiation, they were probably conve-
niently measuring the effects of the Geiger-Müller tube ‘dead time’,
as described below. The fixed, nominal value of the dead time (40

µsec) reasonably accounts for the dose rate range 0-1200 µSv/hr.
More careful fits below show the evolution of the effective dead time
toward the nominal value as dose rates increase.

Recovery time of Geiger-Müller tubes

Real Geiger-Müller tubes have a ‘dead time’–a period after a pulse
(produced by an incident particle of ionizing radiation) during which
the tube ‘recovers’ and is hence not sensitive to additional radioactive
particles. The LND model 7317 Geiger-Müller tube is described as
having a ‘minimum dead time’ of 40 µsec = 40× 10−6 seconds. How-

The circuitry itself has its own natural
dead time as well. The clock speed of
the Arduino FIO used in the bGeigie
Nano I believe is 8 MHz. Thus the
time for a clock cycle is 0.125 µsec.
Because this is much smaller than the
quoted dead time, we neglect it—the
processor is nimble enough to keep
up with whatever nature throws at the
Geiger-Müller tube.ever, when the time between the random arrival of radioactive par-

ticles becomes comparable to this dead time, a Geiger-Müller counter
will miss some particles, will under-count the rate at which particles
are arriving, and hence will underestimate the dose rate. There are
two common cases often considered to include dead times The sim-

A good reference is the book by Knoll
[2], Radiation Detection and Measurement.
His claim is that the reason for the im-
portance of the two models is that real
Geiger-Müller times exhibit behavior
somewhere between the two.

plest model assumes the tube simply ‘blanks out’ for a fixed dead
time after a particle causes a discharge. The second also assumes a
a particular value of a parameter still called the the ‘dead time’, but
includes the impact of a distribution of dead times determined by the
Poisson statistics of radiation counting.

Before using the data of WKC, it is useful to determine whether
‘dead time’ corrections have anything to do with what is observed.
To this end we use a fixed value τd of 40 µsec (the ‘minimum dead
time’ quoted by the Geiger-Müller tube manufacturer) in Eq. 4 be-
low to ‘correct’ the measured dose rates shown in the Table below.
The results are shown in Fig. 1.
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Figure 1: Redrawn data of WKC [1] for
bGeigie Nano, red. Blue dots indicate
correction for a fixed dead time of 40

µsec and the green line indicates perfect
agreement between measured and
specified dose rates.

The measured dose rates are shown as red dots; the green line
indicates perfect agreement between measured and specified dose
rates, and in blue are shown the corrected dose rates using this fixed
dead time. It is clear that while the simple, fixed-τd model overes-
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timates actual dose rates, it accounts reasonably for the entire dose
range.

Simplest dead time model

Two equations suffice to identify the dead time τd in terms of mea-
sureable quantitities. First, we identify what we mean by the total
dead time during a count:

Tact = Tlive + Tdead

= Tlive + Nmeasτd (1)

thus specifying that the actual elapsed time Tact over which counts
were made can be decomposed into ‘live time’ Tlive during which the
tube is available to detect particles and the ‘dead time’ Tdead during
which the tube recovers from a discharge. We say the detector is
‘dead’ but not ‘paralyzed’: more later.

During the Tact we detected Nmeas pulses, so that the dead time
must have been Nmeas τd. We can divide both sides of Eq. 1 by Tact to
find the fraction of time the tube is ‘live’:

Tlive
Tact

= 1− Nmeasτd
Tact

. (2)

Second, we assume that

Tlive
Tact

=
Nmeas

Nact
, (3)

that is: the fraction of the actual counts we were able to measure is
the same as the ratio of the ‘live time’ Tlive to the actual time Tact.
Now we can deduce what the actual number of counts that occurred
during the actual time Tact must have been. If we plug the value of
Tlive/Tact from Eq. 3 into Eq. 2 and solve for Nact, we find

nact =
nmeas

1− nmeasτd
(4)

where (in order to make the denominator dimensionless) we have
replaced the count numbers by the corresponding count rates (in
counts per second) nact = Nact/Tact and nmeas = Nmeas/Tact.

Although usually τd is considered to be a fixed number, it is worth
noting that if we have sets of data pairs {nact, nmeas} we can solve for
τd for each data pair:

τd =
1

nmeas
− 1

nact
(5)

The data of Walsh, Kelleher, and Currivan is precisely of this form.

v 1.1
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‘Paralyzable’ model
Because the parameter τ is already in
use for the dead time, we use a slighty
different notation for the Poisson
distribution of time intervals between
pulses in our Geiger-Müller tube. The
average rate of pulses can be written as
n (measured in pulses per second or
events per second).

The simple model above assumes a fixed dead time. However, the
actual Poisson distribution of intervals between pulses permits much
longer effective dead times as well. The second property of a Poisson
distribution in the Appendix is that the probability to find a time
interval t between random events is P(t) = ne−nt where n is the
average rate at which events occur. (If integrated over all times t we
get 1.) Thus we can compute the probability of an inter-pulse interval
longer than a dead time τd as

P>τd =
∫ ∞

τd

ne−nt = e−nτd . (6)

If we multiply this by n we find the rate at which (on average) events
with inter-pulse dead times longer than the parameter τd occur:
ne−nτd .

For purposes of fitting the WKC data we revert to the notation
established for a fixed, simple dead time above: we indicate the rate
of measured and actual pulses by nmeas and nact, respectively. Then

nmeas = nact e−nactτd . (7)

This expression is conceptually different from the corresponding
‘non-paralyzable’ result in Eq. 4 because the right-hand side depends
now on nact in a transcendental way, forcing us to solve numerically
(given nmeas and τd) for nact. On the other hand, given the data pairs
{nmeas, nact} we can solve for τd.
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Figure 2: Schematic dependence of
measured count rate on actual count
rate (note switch of usual ordinate and
abscissa) with no dead time (blue), a
fixed dead time (green), and a fixed
dead time in a paralyzable model.
To find the actual count rate in the
paralyzable case one must find the
intersection of a specified measured
rate with the orange curve.

In Fig. 2 we show schematically the qualitative behavior of the
curves f (x) =

{
x, x e−tx, x/(1 + tx)

}
, which are the forms assumed

when a counter exhibits (i) no ‘dead time’, (ii) a non-paralyzable
recovery, and (iii) a paralyzable recovery shown in blue, green, and
orange, respectively. These forms result when one plots the measured
dose rate as a function of the actual dose rate, not the usual ordinates
and abscissas. The horizontal red line specifies an observed measured
rate: the intersection of this line with the three curves yields the
expected dose rate for each model.

Note that for the orange curve if it is the larger value of nact that is
physically relevant, then we have a situation in which as the actual
dose rate increases the measured dose rate decreases! It is as if the
detector is increasingly paralyzed as the dose rate increases. The non-
monotonic behavior in the paralyzable case is discussed in Knoll
and requires careful experimental measurements to identify which
intersection is physically relevant. In the case of the WKC data [Fig.
1], however, it is clear that the measured dose rate increases with the
actual dose rate, so the ‘paralyzable’ case behavior will not occur in
this dose range.

v 1.1
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Extracting dead times from published calibation data

We note that the count rates are linearly proportional to dose rates
D̃ measured in µSv/hr. Based on the minimum dead time quoted
for the LND 7317, we choose to compute dead times τ̃d measured in
µsec. Then nτd = αD̃τ̃d where

α =
334 counts/min

1µSv/hr
× 1 min

60 sec
× 10−6 sec

1 µsec

' 5.56× 10−6. (8)

In terms of α we may now write

τ̃d =
1
α

(
1

D̃meas
− 1

D̃act

)
non-paralyzable (9)

D̃meas = D̃act e−αD̃act τ̃d paralyzable (10)

The procedure above results in the values shown in the table be-
low.

exp D̃ meas D̃ corr D̃ simp τd paral τe f f

5 5.2 5.21 – –
30 31.7 31.93 – –
50 53.1 53.74 – –

100 98.3 100.5 31.07 30.80

300 300.3 321.82 – –
500 488.8 548.50 8.23 8.14

700 645.0 753.17 21.88 21.00

800 717.3 853.64 25.89 24.50

900 787.1 954.36 28.63 26.75

1000 838.6 1031.14 34.57 31.62

1200 964.4 1228.13 36.57 32.72

Table 1: Calibration data for bGeige
Nano from Walsh, Kelleher, and Cur-
rivan [1]. Exposed, measured, and
‘corrected’ are dose rates in µSv/hr.
‘Dead times’ are in µsec. Negative dead
times are indicated as -.
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Figure 3: Evolution of the extracted
dead time with specified dose rate in
a non-paralyzable model (blue), in the
paralyzable model (green). The fixed,
nominal ‘minimum dead time’ for the
Geiger-Müller tube is shown in red.

In Fig. 3 we show how the extracted dead times for the non-
paralyzable case (shown as blue dots) and paralyzable case (shown
as green dots) evolve as the specified dose rate increases. It is worth
noting that

i For several dose rates the extracted dead time is less than zero,
indicating that the data is not precise enough to permit a robust
solution; this tends to occur at low dose rates where the mea-
sured and actual dose rates are very close in value. (The 100

µSv/hr point is an outlier.) Above about 300 µSv/hr, however,
the extracted dead time values increase smoothly with dose rate
(apart from some scatter in the measured data).

ii At low dose rates the extracted dead times are close in value. (It
is widely known that the non-paralyzable and paralyzable results

v 1.1
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coincide to lowest order in τ, which can be taken as zero at very
low dose rates.)

iii Both sets of extracted dead times appear to be asymptotically
approach (distinct) constants not far from the nominal 40µsec
quoted dead time. This is consistent with having identified
Geiger-Müller tube dead times as the principal origin of the sys-
tematic differences between specified and measured dose rates.

iv As noted above, any dependence of the dead time on dose rates
is an indication that a fixed dead time fails to account for the
kinetics of pulse relaxation. The extracted dead times indicate
that (in effect) relaxation is faster at low dose rates than at high.

Using WKC data to construct a correction curve

We use a parameterization of the evolution of the non-paralyzable
(simple) dead time with specified dose rate of the convenient form

τ(x) = a
(

1− e−
(x−x◦)

b

)
(11)

for dose rate x. (Only simple operations and functions have been
chosen.)
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Figure 4: Fit to the dose rate depen-
dence of the simple Geiger-Müller dead
time extracted from WKC data.

This form permits ready identification of the dose rate x◦ at which
τx first becomes positive (an acknowledgement of small differences
and hence numerical noise between specified and measured rates at
low dose rates), the characteristic dose rate scale b over which the
dead time ‘turns on’ and increases, and the saturation (high dose
rate) value of the dead time. For x in µSv/hr, we find best fit param-
eters a = 59.95, x0 = 324.45, b = 867.99 with a fit “R squared” of
0.9963 (a good fit). Standard errors, in percent, for these fit param-
eters are about 26%, 8%, and 41%, respectively. An extrapolation to
very high dose rates is shown in Fig. 4. Note that 5000 µSv/hr cor-
responds to more than 1.6 million counts per minute, so these high
dose values are physically irrelevant and should not be trusted from
an extrapolation from much lower dose rates.
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Figure 5: Correction curve including
dose-dependence of the dead time
extracted from WKC data.

A more useful application of a parameterized dependence of
the dead time on dose rate is to construct a ‘correction curve’ from
which the actual dose rate can be predicted from the bGeigie Nano-
measured dose rate. This is shown in Fig. 5; WKC data points are
shown as blue dots. Differences between the corrected and incident
dose rates are no more than 4% at moderate to high dose rates. This
figure should be compared with the original curves in Fig. 1.

v 1.1
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Takeaway points

• What appear to be errors of calibration for the bGeigie Nano are in
fact the onset of dead time effects for the LND 7317 Geiger-Müller
tube beyond about a dose rate of 300 µSv/hr (or 100,000 counts
per minute, using the Safecast 137Cs calibration of 334 CPM = 1

µSv/hr).

• For very high count rates the non-paralyzable dead time appears
to saturate at an extrapolated value of about 60 µsec.

• From the viewpoint of the Safecast project

1. The data of Walsh, Kelleher, and Currivan confirm very good
calibration of the bGeigie Nano at low to moderate dose rates.

2. There is already support for dead-time correction (of the non-
paralyzable form) for the bGeigie Nanon: the GitHub bGeigie
Nano codereads

c_p_m = (unsigned long)((float)c_p_m/(1-(((float)c_p_m*1.8833e-6))));

which (since the count rate is presumably in CPM) means an
assumed dead time of 113 µsec: equating 1.8833e-6 with

τ(in µsec)× 10
−6 sec
µsec

× 1 minute
60 sec

The accompanying comment
// deadtime compensation (medcom international)

implies this is a long-standing value.

3. Since curent bGeigie Nano specifications indicate a maximum
operating value of 1000 µSv/hr, it makes some sense to evaluate
the dead time at this value, where is is 34.6 µsec (see Table 1).

• Questions for Safecast:
Why this value of dead time (113 µsec)? It is much larger than
the dead time extracted directly from the WKC data and than the
asymptotic large-dose limit value extracted above.
Precisely when is dead time correction turned on? For which
displays? For ‘xGeigie’ and ‘bGeigie" modes? In the LOG file? Is it
applied during post-processing of the LOG file by the API?
If it was automatically turned on, why did the authors find a ‘cal-
ibration curve’ that looked exactly like the raw data (uncorrected
for dead time)? They were actually filming the display while the
bGN was in ‘bGeigie’ (logging) mode, so they had both a LOG
file and the filmed record. Thus both the display and the LOG file
would appear to show un-corrected data. Did the authors turn off
the alarm dose rate (150 CPM).

v 1.1
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Appendix: Statistics of radioactive decay

For our purposes we can summarize Poisson statistics via the proper-
ties

1. Decay probability in a small time interval: The probability a given
nucleus decays in a differential time dt is 1/τ dt, where 1/τ is
the average decay rate. Warning: the parameter τ is conventional
notation and has nothing to do with a ‘dead time’. Its physical
significance is entirely that the average rate at which decays occur
is 1/τ, with units decays per second. Thus we could equally well
write the average decay rate as n.

2. Survival time before decay: Using the result above the probability Ps

(s indicates survives) the nucleus ‘survives’ to a time t+ dt without
decay can be written

Ps(t + dt) = Ps(t)×
(

1− dt
τ

)
,

where 1 − dt
τ is the probability that the nucleus does not decay

(that is, survives) during a time interval dt. Expanding out for
small dt,

Ps(t + dt) = Ps(t)− Ps(t)
dt
τ

' Ps(t) +
dPs

dt
dt,

so that (since the term Ps(t) is common to both sides)

dPs(t)
dt

× dt = −Ps(t)
dt
τ

,

whose solution is (assuming we start watching at time t = 0)

Ps(t) = e−
t
τ = 2

−t/t 1
2

v 1.1
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where evidently t 1
2
= τ ln 2. This expression also holds for the As you know, the survival of a large

collection of identical radioactive nuclei
is described by their ‘half life’: the time
it takes for half of this collection to
have decayed. Thus we have related the
decay behavior of an average nucleus
to the half life of a sample of identical
nuclei.

time interval between events which obey Poisson statistics, such
as the time between pulses in a Geiger-Müller detector due to
random incoming radiation.
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