
Processing bGeigie Nano log files from car trips
D. M. Wood, June 2020

This tutorial document

• Reviews data of Stone, Whicker, Ibrahim, and Whicker on the am-
bient dose equivalent [radiation] rate (ADER) along Interstate 70 in
Colorado and contrasts it with what can be acquired by a compact,
GPS-enabled, data-logging Geiger-Müller unit at highway speeds
with samples every 5 seconds.

• Discusses wavelet de-noising and describes in detail the processing
of data needed to extract radiation rates and the distance scales
over which they vary. Shows how to combine ‘there’ and ’back’
legs for stable numerics.

• Presents simple guidelines for the trade-offs between spatial varia-
tion and vehicle speed.

• Compares recently measured with Stone et al. data for the Rocky
Flats National Wildlife Refuge and its interior, confirming the
reliability of the bGeigie Nano for ADER measurements.
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Introduction

New capabilities of the SAFECAST QGIS (3.x) version 2 plugin per-
mit more sophisticated analysis of bGeigie Nano log files. In this
document I illustrate how I have done some of this. I welcome any
corrections or suggestions since I am a relative newcomer to process-
ing such data.

The Front Range of Colorado, by virtue of both altitude and nat-
ural soil radionuclides, exhibits the highest background radiation in
the United States. This also varies considerably from place to place
within the state. The article Spatial variations in natural background

“The granites of Colorado’s Front
Range are particularly enriched in these
[radioactive] constituents compared to
normal granites. . . ”, according to the
Stone et al.

radiation: absorbed dose rates in air in Colorado by Stone, Whicker,
Ibrahim, and Whicker [1], published in 1999, reported ‘ambient dose-
equivalent [radiation] rate’ (ADER) measurements, taken in summer
1995 at 1150 locations in Colorado using a pressurized ionization
chamber (PIC). The authors also presented data along Interstate

Such PIC detectors (as can be seen
here, Fig. 7 have an essentially flat
response to gamma rays over the range
of about 70 keV to 10 MeV. The LND
7317 Geiger-Müller tube is not energy
compensated, in comparison.

Highways I-25 (north-south) and I-70 (east-west, about 300 locations)
with PIC measurements taken at rest every 1-2 km.

As discussed elsewhere, the bGeigie Nano is a GPS-enabled pan-
cake Geiger-Müller counter, designed by the SAFECAST project,
which acquires data every 5 seconds and logs location, altitude, and
count rate to a file. The log file can be post-processed for detailed
geographical and radiation rate data. By contrast to the painstakingly
acquired precise results of Stone et al., we show here results along
I-70 from Arvada to Grand Junction, CO (and back) taken at high-
way speeds with the counter hanging on the outside of a car window
facing outward with its axis horizontal.

Figure 1: Assembled bGeigie Nano
kit. This device was developed by
SAFECAST for the measurement of the
ADER with this counter orientation. Its
calibration was established by SAFE-
CAST (using 137Cs) as 334 counts/m =
1 µSv/hr, permitting ready conversion
to the ambient dose equivalent rate.

With Poisson statistics with count rate N per counting interval
one expects relative fluctuations (standard deviation of the mean
over the mean) of 1/

√
N. In Colorado the mean number of counts

per 5 seconds is about 5, so one expects relative fluctuations of '
1/
√

5 ' 0.45 = 45%. (The value computed directly is about 50%,
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larger because of substantial variation from place to place.) Thus the
measured ADER is quite noisy; we discuss the significance below.

Results of Stone et al

We focus here on the the published data along Interstate 70; some
will be presented graphically below. General conclusions and re-
marks include (i) west of the Continental Divide about 60% of the
ADER is attributed to terrestrial (soil-based) radiation. East of this
the terrestrial fraction rises to about two thirds; (ii) among the 40 The ‘Continental Divide’ separates

streams which flow into the Atlantic
from those that flow into the Pacific.

communities surveyed along the Front Range the average ADER
was 0.143 µGy/h: 0.135 for those below about 2000 m and 0.196 for
those above; (iii) about 30% of the observed variation of the ADER
is attributable to elevation, partly from elevation and partly because
granitic geology (and thus higher soil radiation) is more common
at high altitudes and sedimentary geology at lower, and (iv) the ‘co-
efficient of variation’ [relative fluctuations in the mean = (standard
deviation)/mean] for the terrestrial dose rates was 33%. The authors
remark, “The large peak in terrestrial dose rates east of the Continen-
tal Divide was primarily responsible for this large CV value.” Finally,
it is important to note that most data was acquired while the detec-
tor was stationary, permitting more careful control over counting
statistics.

Most of their data comes from a sequence of 6 measurements
per 1-minute interval Unfortunately, nowhere do the authors re- My interpretation: each measurement,

carried out by pressing a buton, speci-
fies the number of counts in a 1-second
sample. There is a 10s interval between
such presses, leaving time to record or
write down the results. So in 60 sec-
onds there are 10×5s of pauses, 6×1s of
measurements, and 4 extra seconds.

port count rates, so direct evaluation of statistical noise is difficult
since the PIC is automated. They remark, “As mentioned, one of the
above locations was also used for a calibration checkpoint where PIC
measurements were made over a several-month period. Of the vari-
ous types of measurements used to check the calibration of the PIC
instrument during this period, 56 were unshielded background mea-
surements. For these background measurements, the average percent
difference between the means of the six readings in 1 min, and the
mean of the 56 dose rates recorded over the 3-mo period was 2.6%.
The above results indicate that the mean value of six instantaneous
PIC measurements taken over a 1-min period provided a good rep-
resentation of the true average dose rate at a given sample location.”
If we attribute all of the 2.6% disagreement to Poisson noise, we have
0.026 ' 1

Ne f f
, where Ne f f is the effective number of counts per sam-

pling period, about 1480. Thus we estimate the counts per 1-second
interval as about xxxxx. for their typical situations. This is consistent
with other published accounts of the use of

v 0.9
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bGeigie Nano results

I have logged bGeigie Nano results
on several airplane flights; I read that
most passenger jets are pressurized to
an equivalent altitude of 2500 meters
(8000 feet). I have taken it on a hike to
about 3600 meters. On the other hand,
for those contemplating driving trips
at high altitude, this warning (from
several sources online):

Bill Lehnert of LND today
verified: “LND 7317-Routine
operation at 5000-6000 feet
no problem, i.e. Denver, Los
Alamos. Above that they
work fine until the reverse
bow becomes a problem in
the housing. Once the bow
has reversed, the tube will
continue to work fine. It
is not a good idea to cycle
between high altitude and
low altitude, as eventually
the seals will suffer.”

I verified that the bGN continued to
operate normally after the hike to
3600m.

Processing of bGeigie Nano log data

Version 2 of the ‘SAFECAST plugin’ (developed by OpenGeoLabs
at the behest of SÚRO, the Czech National Radiation Protection In-
stitute) is compatible with QGIS version 3.x, an open-source GIS
program. The plugin is available from github. It permits graphical
trimming of points from a logged trajectory and computes speeds,
accumulated distance, and point-by-point and net ADER dose. (This
is in addition to QGIS visualization of the trajectory and color-coded
ADER values.)

The raw data sets discussed below are available from the SAFE-
CAST repository as bGeigie Import #43182, “Drive along Interstate
70 in Colorado, from Grand Junction to Arvada” and bGeigie Im-
port #47220, “Drive along Interstate 70 in Colorado, from Arvada to
Grand Junction”. I took care to remove trajectory points correspond-
ing to roadside pauses or a visit to a gas station, and to make the
trajectories otherwise as similar as possible, beginning and ending
at well-defined points on on-ramps or off-ramps. Despite these pre- Data acquired occasionally resulted in

apparent speeds of zero (especially in
tunnels) or real speeds of zero (heavy
traffic from the mountains toward Den-
ver on a Sunday afternoon). In cases
of a single such point the zero velocity
was replaced by its average over adja-
cent points. For longer sequences, the
initial velocity was replicated for all
nominally zero values.

cautions, the Grand Junction to Arvada leg (henceforth labeled GJ-A)
distance was computed to be 380.9 km, to be compared with 380.6
for the Arvada to Grand Junction leg (A-GJ). It is quite likely that
this reflects actual differences in distance along east- and west-bound
lanes rather than error in the data, although there are portions of the
route with poor GPS coverage (see, for example, the deviation of the
trajectory from the west-bound actual lane shown in the margin).

It is customary to decompose the ADER [total = cosmic + terres-
trial] into contributions from terrestrial (soil) radiation and from
cosmic rays. The latter (and hence the former) is estimated using
approximations valid for a wide range of latitudes and altitudes. A
number of authors have parameterized this cosmic ray dose rate. We

These are generally valid for a wide
range of latitudes in the northern
hemisphere.

adopted the form of Cinelli et al.[2], whereas Stone et al. assumed a
quadratic dependence:

◦
H=

{
27.4

[
0.205 e−1.649z + 0.795 e+0.452z] present work

27.38 + 7× 10−6 z2 − 1.2× 10−3 z Stone et al
(1)

where z is the altitude in m and
◦
H is the ADER in nano Gray per

hour (nGy/h). Note that 1000 nGy/h = 1 µGy/h, the units used
below. Despite the very different forms assumed the results are very
similar over the physical range of altitudes of interest. I have used a
relative biological effectiveness of 1 (as for γ rays) in order to convert
between grays and sieverts.
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Figure 2: Alternative parameterizations
of ADER on altitude don’t matter. Only
recently did I discover that both sets of
authors used the same sea-level (z=0)
value.
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Dealing with noise in bGeigie Nano radiation results

As noted above, the low mean count rates imply that radiation data
will be noisy. There are a number of tactics for ‘de-noising’ data, but
we focus here on two: a simple moving average, and the use of a
wavelet transform.

Because of the mean count rates per 5s sampling interval n ' 5
mentioned above, we expect relative fluctuations of 1/

√
5 ' 45%.

A moving average (over say, N points) reduces this to 0.45/
√

N =

1/
√

nN.1 However, there are a couple of drawbacks (of great im- 1 Thus a moving average over N points
is equivalent to multiplying the count
rate by N.

portance in stock trading, when the relevant data is usually a time
series). For our purposes, one is that the dimension of the data array
resulting from the moving average has been reduced by (using, say,
Mathematica) by N-1. This effectively pushes the boundary at which For example, for N = 60 the first 59

data points are used to compute the
moving average evaluated at the 60th
point. There are many other options for
carrying out moving averages; this is
the simplest.

we begin evaluating the ‘time series’ by 59 time steps. If the signal
is time dependent, there is thus a ‘lag’ in the moving average with
respect to the current value at a time t; same for distance in our case.

In the context of smoothing bGeigie Nano data with a 5 second
sampling interval, this means that a sequence of spatial positions be-
gins a distance something like (N − 1)×v×5 (where v is the average
initial speed in m/s) from our original origin. In comparing the two
‘legs’ of a a round trip this requires some care, as discussed below.

On the Grand Junction to Arvada trip
the initial speed, averaged over the
first 60 points, was 50 km/h, yielding a
displacement of 4.1 km.

By contrast, a wavelet transform of a signal concentrates non-noise
features into a small number of large-amplitude wavelet coefficients.
The choice of threshold for the retained coefficients and a ‘refine-
ment scale’ determine the extent of de-noising. Although the forward

In a Fourier time-frequency transform
one could similarly discard high tem-
poral frequencies to achieve a smooth
signal that may or may not be free of
noise. One may regard (see this brief
tutorial) the wavelet transform for a
time-dependent signal as taking us
from the time domain to the time scale
domain. Other useful references [3],[4]
provide overviews and the MATLAB
examples are helpful.

and reverse wavelet transforms are linear, the thresholding is non-
linear. The wavelet de-noising process is regarded as non-parametric:
no particular assumptions need be made about the threshold: there
is even a universal threshold, adopted here as implemented in Mathe-
matica. The Mathematica ‘module’ (subroutine) which accomplishes
both the de-noising and elimination of occasionally occurring outliers
is shown in Fig. 3 in the margin. Here we adopt a basis of the ‘least
asymmetric’ wavelets of order 7, 6 levels of refinement, and threshold
wavelet coefficients using the default Mathematica ‘Universal’ thresh-
old setting. The impact of such choices is discussed in Appendix
B. Thresholding methods are dis-

cussed in the documentation for the
WaveletThreshold command. We
detect outliers using Mathematica’s
AnomalyDetection command.

De - noise using wavelet transform

WavelClean[infile_] :=
Module[{transform, wavel, hold, detect, outliers, nout},

transform = DiscreteWaveletTransform[infile[[All, 2]],
SymletWavelet[7], 6];

transform = WaveletThreshold[transform];
wavel = InverseWaveletTransform[transform];
hold = Transpose[{infile[[All, 1]], wavel}];
(* reconstitute data pairs before outlier detection *);
detect = AnomalyDetection[hold, PerformanceGoal → "Quality"];
outliers = FindAnomalies[detect, hold];
Print[outliers];
nout = Dimensions[outliers][[1]];
Print[
nout
"obvious outlier data points deleted from wavelet

denoised data"];
Complement[hold, outliers]]

Warning : because of the stochastic nature of the outlier detection
algorithm, the number of detected outliers may differ somewhat from one
call to another!

Figure 3: Example of sequence used
to de-noise (and remove outliers from
inverse wavelet transform.

As an example, Fig. 4 shows part of the data (light blue) from
6000 Poisson-distributed random numbers (mean of 5). In orange
is the 100-point moving average result, reducing noise (as verified
numerically) by the advertised factor of

√
100 = 10. In the lower

panel we contrast moving average and wavelet results. It is clear
that the wavelet results generally reproduce the principal features
of the moving average but are much smoother. The most important
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http://www.toolsmiths.com/docs/ct199809.pdf
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takeaway from this figure is that both the wavelet transform and the
moving average agree on structure present in strictly random data,
which can carry no physical significance. This warning holds when in-
terpreting noisy bGeigie Nano radiation data–more work is required
to determine which features in a de-noised data set are physically
meaningful. An example of the process is given in Appendix C of the
document here.
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Figure 4: De-noising and smoothing of
strictly random numbers. Note close
agreement between wavelet [symlet
order 7, refinement level 6] and moving
average results in lower panel, though
this has no physical meaning.

Comparison of bGeigie Nano results with those of Stone et al.

In Fig. 5 we show the data of Stone et al. (top panel) and our data
(lower panel). The published figure was digitized and redrawn
for flexibility. The upper and lower panels are not meant to be in
registry– some additional scaling would be required to superpose, for
example, altitude features. We note that
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Figure 5: Comparison of 1995 data of
Stone et al. using a pressurized ion-
ization chamber with de-noised [see
text] data acquired in July 2019 using
bGeigie Nano Geiger-Müller detector
at car speeds. Units are equivalent: 100

nGy/h = 0.1 µSv/h with an assumed
relative biological effectiveness of 1 for
cosmic rays. Note that the cosmic ray
contribution is derived directly from al-
titude data. A 60-point moving average
for total ADER data is shown as a light
purple dashed line. Note that peak total
ADER occurs east of the Continental
Divide (Eisenhower Tunnel). The nar-
row red peak at around 320 km is an
artifact of the wavelet thresholding not
detected as an outlier.
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1. Superficially the two panels resemble each other quite closely
except that a scatter of discrete points has been replaced by a con-
tinuous curve for the terrestrial radiation contribution. On the
other hand, the average level of terrestrial radiation as measured
by the bGN is somewhat higher on the west side of the Continen-
tal Divide and somewhat lower near the peak of the ADER.

2. Unsurprisingly, fine details in the relatively slowly varying alti-
tude are evident due to the finer sampling distances made possible
by the 5s sampling interval.

3. The amplitude of modulation of the terrestrial component (red)
in the lower panel is quite similar to the width of the band of red
dots in the upper panel.

4. bGN data approaching the Eisenhower Tunnel is distinctly less
smooth than that of Stone et al., possibly reflecting abrupt changes
in geology as mostly granitic rock is replaced by sedimentary rock.

We reserve a discussion of whether features evident in the bGN
ADER are physically meaningful until after presenting the ’return
leg’ data.

Combining ‘there’ and ‘back’ legs of a round trip

It is worth briefly examining the data acquired during the other leg
of the Grand Junction to Arvada trip. Were the endpoints identical
and the data acquired in the same way, the various trajectories (e.g.,
altitude vs. trip distance) should be mirror images. Mathematically,

fGJ−A(x) = fA−GJ(D− x) (2)

where f are the path functions D is the nominal distance and x the
distance along the path from Grand Junction to Arvada: x ranges
from 0 to D.

Results can differ for a number of reasons: (i) GPS satellite visi-
bility due to canyon walls, or depending on the time of day of the
trips; (ii) especially in Glenwood Canyon the east- and west-bound
lanes of I-70 are substantially displaced; (iii) traffic during the GJ-A
trip (transit time 5:07:45, 76.3 km/h average speed) was considerably
higher than during the A-GJ trip (transit time 4:37:41, average speed
88.7 km/h). (A longer duration will of course result in a higher net
computed ADER dose even for identical distances.)

As discussed above, measured and derived radiation quantities
suffer from large Poisson fluctuations of the counting rate. As before,
we will examine the same two approaches to de-noising: the use of
a moving average and a wavelet transform. As above, we adopted a

v 0.9
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60-point moving average (in principle, a 5-minute time average in the
time domain), and the same set of wavelet parameters used earlier.

Precisely which features survive this
moving average to be physically mean-
ingful requires more analysis, such as
that here.

Comparing ‘there and back’ trajectories when using a moving average log10 Daltit
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Figure 6: A measure of the 60 point
moving average-induced shift between
the ‘forward’ and ‘back’ legs of the
trip, for the altitude (green) and ADER
(blue). Note that the difference is
minimized for both scenarios for a shift
of about 3.5 km.

A 60-point moving average, as mentioned earlier, causes a time or
spatial lag, and modifies the apparent lengths of each leg of the jour-
ney, from 380.7 to 377.2 [GJ-A] and from 379.9 to 376.1 [A-GJ], and the
dimensions of the resulting data arrays. These shifts are quite com-
parable to our earlier crude estimate of 4.1 km. Measured features
are tied to the actual location, not that resulting from the moving av-
erage. For this reason the quantity D on the right side of Eq. (2) was
replaced by D+δ, where δ is meant to ’soak up’ most of the impact
of the truncation of the range due to the moving average. The mean
square difference of It is easy to define a continuous

function of x by simple interpola-
tion using Mathematica via f(x) =

Interpolation[arvtogj][x] where
arvtogj is the array of x-y data pairs of
interest. These are the functions used in
Eq. 3.

∆ =
∫ b

a
dx
[

fGJ−A(x)− fA−GJ(D + δ− x)
]2 (3)

where a and b are selected to be 5 and 375 km, respectively, to assure
that interpolation is well defined for both legs.

Fig. 6 shows the quantity ∆ for both the total measured ADR (in
blue), and for the altitude (in green), as a function of the shift δ.
It is worth noting that (i) the value of the shift δ is similar to the
truncations in leg length due to the moving average construct; (ii) the
value of δ (' 3.5 km) which minimizes the there/back difference is
the same for the altitude profile as for the ADER profile. In Fig. 7 we
compare the 60-point moving average for the altitude (which does
not suffer from Poisson noise, upper panel) and the ADER, which
remains jagged despite reasonable agreement between the two legs.
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Figure 7: Superimposed moving aver-
age curves for trajectory from Grand
Junction to Arvada (red curves) and
from Arvada to Grand Junction (blue
curves). The region between the two
(the difference) is highlighted in yellow.
Upper panel: altitude; lower: measured
ADER.

Comparing ‘there and back’ wavelet de-noised trajectories

As earlier noted, apart from its parameter-free removal of a great deal
of Poisson noise, the wavelet approach (since it re-synthesizes the
de-noised dateset) does not change the length of the spatial region
(or total time duration) of the sample. Thus no special measures need
to be take to ‘invert’ the trajectory. Results analogous to those for the
moving average are shown in Fig. 8, as above using symlets of order
7 and refinement level 6.
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Figure 8: Superimposed wavelet de-
noised curves for trajectory from Grand
Junction to Arvada (red curves) and
from Arvada to Grand Junction (blue
curves). The region between the two
(the difference) is highlighted in green.
Upper panel: altitude; lower: measured
ADER.

Careful inspection of the altitude curves display much finer de-
tail present in both legs of the trip. On the other hand, the same
disagreements (although much smoother) are present in the ADER
curve as we saw in the moving average curve.

As warned above, features which are entirely random in origin
may persist through a moving average, as discussed in detail here.
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processing bgeigie nano log files from car trips 9

However, comparison of the ‘forward’ and ‘back’ curves permits
identification of common features that are thus less likely to be due
to statistical noise alone. In comparing red and blue curves for the
ADER we note

1. The amplitude of red and blue curves is generally quite similar in
each region of the trajectory. The precise alignment of the curves
for the altitude data allows us to conclude that the red and blue
ADER curves must be dominated by statistical noise, making
it more difficult to attribute structure in the curve to geological
features. (This is addressed further below.)

2. Large features beyond 225 km from Grand Junction are reasonably
consistent between the two trajectories; below 225 km or so there
appear to be weaker correlations between the two curves.

Quick overview of measured ADER within the Rocky Flats National Wildlife
Refuge

[This topic is primarily about the reliability of the bGeigie Nano’s
ADER measurements, not about geo-tagging per se.] Stone et al.
noted, “Land adjacent to the Rocky Flats Environmental Technology
Site [now the Rocky Flats National Wildlife Refuge and the DOE-
controlled ‘central operable unit’ (COU)] was included in this portion
of the study. No measurement anomalies were detected around the
site and, therefore, PIC readings appear to reflect normal total back-
ground values for the area (130-147 nGy h-1).” � �
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Figure 9: Data for bGeigie Nano sur-
veys or trails within the Rocky Flats
National Wildlife Refuge and the COU.

The same bGeigie Nano was used to map radiation levels (at walk-
ing speed) on trails inside the Refuge in April, and within the COU
(by car and on foot) in June of 2019. Histogram results are shown in
Fig. 9. On the trails the ADER was measured to be 0.1397 ± 0.0006

µSv/h and within the COU, 0.1395 ± 0.0018 (where the ± indicates
95% confidence interval). The average of the range quoted by Stone et
al is 0.1385, so the more recently measured values are entirely consis-
tent.

These comparisons may shed some light on the reliability of the
bGeigie Nano for routine measurement of the ADER under a variety
of geological and altitude conditions.

Spatial resolution of data acquired in a moving car

Neither wavelet transform nor moving average results provide a di-
rect estimate of the length scales over which we can trust deduced
variations in radiation-related quantities. Ultimately, the best indica-
tion that such features exist in the data presented so far is the ‘there
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processing bgeigie nano log files from car trips 10

and back’ comparisons along I-70, since we expect partial cancellation
of random noise. As we have seen above [for example, the light pur-
ple curve in the lower panel of Fig. 5 or the lower panel in Fig. 7],
the moving average process produces jagged fine-scale features
which are probably not physically relevant. We are thus left with
the (symlet order 7, refinementn level 6) wavelet de-noised curves as
the most reliable and convenient representation of spatial variations.
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Figure 10: Medium-scale (top) and
fine-scale (bottom) variation of the
measured, de-noised ADER (blue), the
de-noised car speed (green), and the
HDOP (red) during the Grand Junction
to Arvada leg. Colored brackets indi-
cate minimum and maximum values for
each curve.

Before turning to an analysis, it is useful to briefly examine other
measured or deduced quantities which bear on this. Fig. 10 shows
medium- and fine-scale variations of the wavelet-smoothed ADER,
the car speed, and the horizontal dilution of precision (HDOP) re-
ported by the bGeigie Nano log. It is tempting to ascribe the ‘hiccup’
in the wavelet-de-noised ADER curve at about 300 km into the trip to
the poor (high) HDOP, although the speed curve indicates stop-and-
go traffic around this time as well.

These hiccups/discontinuities in
wavelet inverse transform have been
reported to Wolfram as a bug.

Trade-off between resolution and Poisson fluctuations

As mentioned previously, for a Poisson distribution of mean count
rate µ = n, the relative counting fluctuations (or relative uncertainty
in the mean count rate)

δn ≡

√
(n− n)2

n
=

√
n2 − n2

n
=

√
µ

µ
= 1/

√
µ = 1/

√
n (4)

Warning: this expression tacitly assumes a specified sampling inter-
val! If the sampling interval is 5 seconds and the mean count per
sampling interval is 4.175 we would find δn ' 0.489. If we changed
the sampling interval to 60s the mean count per sampling interval
would change to 12 × 4.175=50.1 and the relative uncertainty δn
would drop by a factor of 1/

√
12 to 1/

√
50.1 = 0.141. Thus we can

These count rates are selected to yield
an ADER of 0.15µSv/h, comparable to
values along I-70 apart from the Front
Range, given 334 counts/min = 1µSv/h.

achieve a much higher mean count rate (and thus a smaller relative
uncertainty) simply by making our effective ‘sampling time’ much
longer than 5s. For a moving vehicle this goes hand in hand with a
larger distance between samples. Thus we expect a tradeoff between
smaller statistical uncertainty and coarser spatial resolution.

If the average count rate (physically determined by radiation lev-
els) is p per second and we want a particular value of relative uncer-
tainty δn we would thus need to count for a time T (in s) satisfying
Ncount = pT = n = 1/(δn)2. During this time a car moving at
speed v would have moved a distance ∆x = vT. With v measured
in km/h and p in counts/s, the car would have moved a distance
∆x = v/

(
3.6 p (δn)2) meters.

By contrast, during the 5s sampling interval of the bGeigie Nano
the car moves 5v/3.6 meters. We adopt a typical speed of 80 km/h
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processing bgeigie nano log files from car trips 11

for concreteness. Then the ‘intrinsic’ resolution of car measurements
(the distance moved between 5s samples) is about .111 km, well
above the assumed GPS measurement error of a few meters. On
the other hand, if we require relative statistical fluctuations of only
10%, we would have traveled a distance of 2.22 km to achieve the
required total number of counts. We can in principle achieve this
simply by performing a moving average of length 2.22/0.11 ' 20,
since we confirmed above [footnote 1] that such a moving average
effectively increases the number of counts by this factor.

Fourier analysis

The issue of which measured spatial variations in radiation rates
from a moving vehicle are reliable is somewhat complicated. Obvi-
ously the distance over which a car moves in one sampling interval
(5s) sets a highest spatial frequency (shortest distance), provided it is
much more than the GPS horizontal position uncertainty. However,
the low count rate due to background levels of radiation (in Col-
orado, about 5 counts per 5s) forces us to consider a coarser length
scale, over which variations in the measured ADER are not domi-
nated by Poisson counting noise. We approach this in a roundabout
way, using wavelet de-noised ADER data then carrying out a discrete
Fourier transform. We examine the power spectrum to identify a
reasonable ’range’.
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Figure 11: Fourier analysis of ADER
data along southern trails in the Rocky
Flats National Wildlife Refuge. Upper
panel shows power spectrum of discrete
Fourier transform, lower panel the
inverse Fourier transform using lowest
25 Fourier components.

Results of a discrete Fourier transform of the measured and de-
noised ADER over a 12 km portion of trails (traversed on foot) within
the Rocky Flats National Wildlife Refuge in Arvada, CO are shown
in Fig. 11. The upper panel shows that the lowest 25 Fourier compo-
nents really do dominate the power spectrum, while the lower shows
that these alone roughly reproduce trends. We can roughly estimate

There are approximately as many
loops (half-periods of oscillation) in the
smoothed ADER as there are apprecia-
ble components in the transform. We
are thus using the Fourier transform
mostly to formalize this relationship.

the highest important spatial Fourier component via

kmax ' nc × 2π/L (5)

where L is the length of the trip and we recognize 2π/L as the ‘fun-
damental’ spatial frequency. Thus nc is the cutoff ‘overtone’ above
which higher Fourier components may be approximately neglected.
Using nc ' 24, this suggests a spatial resolution of something like
2π/kmax = L/nc ' 0.5 km. (In other words: the distance between
adjacent local maxima and local minima in the smoothed curve is
about 0.5 km: there are about 28 maxima or minima over a distance
of 12 km from inspection of the smoothed ADER.) This does not mean that finer-scale

detail does not exist, but that the de-
noising or smoothing process needed to
get rid of large Poisson noise forces this
length scale on us.

We may in turn use this number to estimate how many counts
were acquired over this distance. This will provide insight into the
Poisson noise levels below which we can possibly trust the wavelet de-

v 0.9



processing bgeigie nano log files from car trips 12

noising to detect a signal. Using the bGeigie Nano calibration of 334

counts/m = 1µSv/h, since the average speed was 4.1 km/h and the
average ADER was 0.141 µSv/h:

Ncount ' 0.50km/(4.1km/h)× 60min/h [minutes]

×0.141µSv/h× [334 counts/min] /(1µSv/h)

= 345 (6)

The Poisson relative uncertainty 1/
√

Ncount is thus about 5.4%.
We may use the much longer highway trips discussed above to

provide two more estimates at a very different acquisition speeds.
For the Grand Junction to Arvada leg of this trip we show in Fig. 12

the power spectrum of the discrete Fourier transform, (top panel), the
lowest 50 Fourier components (middle panel) [blue = GJ-A, red = A-
GJ]. In the lowest panel is shown (blue curve) the wavelet de-noised
ADER during the trip (with its maxima shown as magenta dots for
ease in counting features), and the discrete inverse Fourier transform.
Small red dots show the real part and green large dots show the
modulus of the inverse transform, demonstrating that the imaginary
part is a small fraction of the total. While the inverse transform only
approximately resembles the ADER curve, trends are reproduced and
the number of peaks and valleys is very similar.
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Figure 12: For Grand Junction to
Arvada trip, power spectrum of discrete
Fourier transform of de-noised ADER
data, top two panels, and inverse
Fourier transform compared with de-
noised data. In middle panel we show
results for this trip in blue, with the
Arvada to Grand Junction trip shown in
red.

It is clear that the power spectrum is dominated by the lowest 40

Fourier components (in blue, the Grand Junction to Arvada leg, in
red the other leg). Truncating the Fourier analysis to the lowest 40

components, the inverse Fourier transform approximately reproduces
the ADER curve: the real part of the inverse as small red dots, the
modulus as larger green dots. Peaks in the ADER curve are indicated
as magenta dots to facilitate feature counting. For the GJ-A trip nc '
37, while the A-GJ trip exhibits nc ' 32. We summarize the data for
these three ‘sample trips’ at very different acquisition speeds and
distances in the Table below, which used data directly from the QGIS
SAFECAST plugin statistics panel.

case L v ADER nc DFT counts RU

RF trails 12.1 4.1 0.141 24 0.5 347 0.054

GJ→A 381. 74.4 0.183 37 10.3 508 0.044

A→GJ 381. 82.8 0.169 32 11.9 487 .045

Table 1: Trip length L in km, average
speed v in km/h, average ADER in
µSv/h, characteristic length DFT es-
timated from Fourier transform in
km. Other quantities [RU = relative
uncertainty in counts] are dimension-
less. Rounded from higher-precision
calculations.

Perhaps the most interesting result from these estimates is that
the number of counts over the estimated range DFT is roughly a con-
stant, say 500. This suggests that the features in the de-noised data
emerge when the relative uncertainty in the number of counts is at or
below about 5%. We also note that the ratio DFT/v is approximately
constant.

The GJ→A deduced counts are higher
because the average ADER is larger
(longer trip time–heavier traffic) and the
average speed is lower (same reason).
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Simple model based on de-noised data distance scales

Above we crudely assessed the number of counts (about 500) needed
to account for the spatial signals observed in three different trip
trajectories. The working assumption is that this number is large
enough to permit the ‘structure’ to be discernible over Poisson noise.

As discussed above, the relative fluctuations (relative uncertainty)
in the counting rate for a Poisson process of mean count rate n is

(∆n) /n =
√

n/n = 1/
√

n, (7)

about 1/
√

5 ' 0.45 for an average count rate of about 5 per 5s, as
in the data above. However, we have seen that by requiring a larger
number of counts (the 500 above) it is possible to detect features in
the de-noised ADER profile for a trip. The relative uncertainty in the
number of counts has then dropped to about 10× smaller than the
0.45 of the 5s count rate.

As discussed above,

Ncount ' D× 1
v
× 60× ADER× 334, (8)

or D ' 0.0250 v/ADER.
In Fig. 13 we show a contour plot of the characteristic distance

scale D as a function of the vehicle speed (x axis) in km/h and a
logarithmic ADER scale (y axis) measured in µSv/h, and with log-log
scales for ease of reading low speed values, lower panel. Obviously
measurements taken at at very low speeds are capable of fine spatial
resolution (limited by GPS errors) while only distances of tens of
km are readily detectable at highway speeds and background-level
radiation. The dashed red (orange) line indicates values for A→GJ
(RF trails).
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Figure 13: Contours of constant dis-
tance scale D which can be probably be
detected in wavelet de-noised bGeigie
Nano data as a function of vehicle
speed and radiation rate (ADER).
Dashed lines indicate examples from
Table.

Quick examination of data from a signal to noise perspective

If we denote the local value of the counts per sampling time as R(x),
how large and abrupt must the variations in R(x) be in order to be
detectable in the de-noised data? In Appendix B we show a model
that indicates that (i) we should define the signal to noise ratio from
R(x) via

[S/N](x) =

∣∣R(x)− R
∣∣

√
R

(9)

and (ii) the S/N ratio should exceed about 0.15 to be detectable. The
numerator is the ‘excess count rate’ (above the mean rate) and the
denominator is the ‘noise’ due to Poisson fluctuations, which we
identify as standard deviation of the background Poisson count rate.
We could in principle replace the numerator by the square root of the
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mean square fluctuations in the count rate about the mean at location
x.

This is an extraordinarily naive analysis. Nonetheless, we can at
least verify that it is consistent with already discussed data. If we
revisit the data shown in Fig.11 we see variations in the ADER from
about 0.12 to 0.17, with an average of about 0.14. Translating this into
counts [per minute] so as to preserve a dimensionless signal/noise
ratio, we find the numerator ranges from

Conclusions

1. The bGeigie Nano at highway speeds, in conjunction with the
version 2 SAFECAST QGIS plugin, yields precise and reproducible
altitude profiles.

2. At highway speeds radiation profiles require careful de-noising.
Of the two methods of de-noising used (a moving average or a
wavelet transform) the wavelet transform appears much more
effective than the moving average.

3. By simple Fourier analysis we identified an approximate distance
scale D large enough for the ‘signal’ to sufficiently dominate the
‘noise’ due to Poisson fluctuations in the presence of background
radiation. It appears that about 400-500 counts (over the distance
D) are required for the wavelet de-noising to detect spatial fluctua-
tions in the ADER. This roughly constant value permitted a simple
model to be used to estimate the dependence of this distance on
the radiation rate and vehicle speed.

Open questions

At this point there remain a number of questions when analyzing a
bGeigie Nano (or other) data log.

If we denote the local value of the ADER as R(x), how large and
abrupt do the variations in R(x) need to be in order to be detectable
in the de-noised ADER data? Is there a critical ‘signal to noise’ ratio
guaranteeing that a feature corresponds to physical reality (or will be
detectable)?

There is no ‘signal’ (in a signal+noise view) without inhomogene-
ity of the radiation levels. Thus we need to consider how to classify
this inhomogeneity. The bGeigie Nano data log is time series data
with (almost perfectly) uniform time steps. After processing (such
as de-noising) the ADER vs. distance data can continue to be treated
as some sort of fictitious ‘time series’ with non-uniform steps (due
to non-uniform speed). It is possible that the sophisticated tools of
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time series analysis can be applied to bGN logs either before or after
processing to clarify the questions above.

In the Appendix is a model for a non-uniform radiation-distance
trajectory which
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Appendix A: Choice of wavelet order and refinement level for ADER
de-noising

Since we have no special expectations about the shape of ADER
peaks along paths, we have selected the set of ’least antisymmet-
ric’ orthogonal wavelets, often referred to as symlets. Using these,
we find that the variation of de-noising results with the order (first
index) is quite mild (as it is increased cusps disappear and curves
become smoother), so we have selected symlets of 7th order. Results
for the de-noised GJ-A ADER data as the ‘refinement level’ r varies
from 2 to 4 are shown in the upper panel of Fig. ??. The lower panel
shows results for r=5,6,7. It is clear that the scale expands with r.
As a consequence, the value of r has a strong impact on the number
of oscillations (and to some extent, the amplitude) of the resulting
de-noised curve. A significant fraction of wavelet transforms suf-
fer from (so far) unexplained ‘glitches’ (abrupt almost vertical lines,
corresponding to a number of data points at the same ’distance’ but
spanning a large vertical range.

It is clear that the choice of wavelet refinement level is a very pow-
erful tool in denoising radiation counting data. Too low and the data
remains noisy, too high and the curve is so smooth that important
details may be lost. As a compromise, all de-noising in the text was
carried out with 7th order symlets and a refinement level of 6.

Appendix B: Crude model for detectable changes in the ADER

How small a difference in radiation rates could we detect in the pres-
ence of a given level of Poisson noise in our data?

As a model, we consider a change in count rate (say, per minute)
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along a one-dimensional path of the form

n(x) = n0 + ∆× 2
(

1
1 + e(x−x2)/L

− 1
1 + e(x−x1)/L

)
(10)

where x is the location along our path. Here n0 is the original (back-
ground) count rate and ∆ is the difference at the peak of the ‘enve-
lope’ function (which multiplies ∆). The envelope function is picked
to go smoothly to zero to the left of x1 and to the right of x2; the
distance L determines how abruptly the envelope approaches zero.
Then we generate a large number of random numbers from a Pois-
son distribution of mean n(x), de-noise this list using the wavelet
transform we have previously discussed, and decide whether the de-
noised count rate curve tracks the envelope function well enough for
us to detect.
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Figure 14: Envelope function with two
different settings of parameter L, top
panel. Middle panel:10% contrast at
50 counts/minute (left axis) compared
with 1% contrast at 5000 counts/minute
(right axis). De-noised curves are
shown in blue; they are very similar
because the signal to noise ratio (not the
contrast) is identical for the two cases.
Bottom panel: demonstration that a
2% contrast is marginally detectable,
suggesting a minimal signal/noise ratio
of about 0.15.

We might expect the relevant quantity to be the ratio ∆/n0, which
we call the contrast of the spatial change in count rate. But in fact it is
the signal to noise ratio

S/N = ∆/
√

n0 (11)

which determines ‘visibility’. The difference matters because the level
of Poisson noise is determined by the square root of its mean. In
Fig. 14 we make several points.

1. The parameterization of the path can be made abrupt or very
smooth. Such changes in the model might probe the sensivity
of the wavelet transform, expected to be very robust under such
changes.

2. It is in fact the signal/noise ratio that determines visibility of
changes in the count rate. The left and right axes of the middle
panel are for n0 = 50 and n0 = 5000 with ∆ = 5 and ∆ =

50, respectively. The contrasts are very different (10% and 1%,
respectively) but the signal/noise ratios are identical.

3. Using a count rate per minute typical of Colorado, we see that 2%
changes in contrast might be marginally detected. This amounts to
a lower signal/noise ratio of about 0.15.

Appendix C: Statistics without a statistics course

The terminology of statistics is sometimes confusing and frequently
not uniform across users. We envision a measurement on a system,
for example the writing down the number of counts of a radiation
detector in a specified interval (say, 1 second). We would like to spec-
ify the average (or ‘mean’) number of counts per interval and some
measure of how uncertain we are about this value. Obviously if we
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make only one meausurement we can assume the number of counts
is ‘representative’, but to quantify this we must make a similar mea-
surement several more times.

1. The operations (‘mean’, ‘standard deviation", etc.) have meaning
for as few two data points, but the theory of statistics generally
applies in a situation where the number of measurements (or data
points) becomes very large (� 1, meaning much larger than 1).

2. We happen to know that radiation counting is described by the
‘Poisson distribution’, which holds when the probability p of a
particular nucleus decaying (and thus emitting a gamma ray, for
example) in our count interval is completely random and extraor-
dinarily tiny (� 1, say 10

−12) but the number Nn of such nuclei
is very large (� 1, say 10

13) in such a way that Nn p is finite (say,
about 10).

What can we say about how the average (mean) count rate changes
with the number of measurements, and the uncertainty

Rather than using the formalism of statistics, the examples below
are strictly numerical, imitating as closely as possible the task some-
one carrying out measurements with only rudimentary knowledge of
Poisson statistics would face.

Fig. ?? shows two sequences of measurements taken on a system
which shows about 50 counts per minute. In each sequence we mea-
sure the count rate over 100 minutes, taking one measurement per
minute. Q: Which sequence is more reliable? A: The two are exactly
as reliable! It is only in the limit of

How uncertain is the mean I compute from 5 measurements
How uncertain is the mean I compute from 5 measurements, but

repeated many times? This we can answer
How much better are 10 measurements than 5 measurements?

By inspecting Fig. ??it is fairly clear that we cannot meaningfully
quantify this if we make only 1 set of 10 measurements. H
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